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SOLVING CONSTRAINED PELL EQUATIONS 

KIRAN S. KEDLAYA 

ABSTRACT. Consider the system of Diophantine equations x2 _ ay2 b, 
P(X, y) = z2, where P is a given integer polynomial. Historically, such systems 
have been analyzed by using Baker's method to produce an upper bound on the 
integer solutions. We present a general elementary approach, based on an idea 
of Cohn and the theory of the Pell equation, that solves many such systems. 
We apply the approach to the cases P(x, y) = cy2 + d and P(x, y) = cx + d, 
which arise when looking for integer points on an elliptic curve with a rational 
2-torsion point. 

1. INTRODUCTION 

In this paper, we describe an elementary method for solving certain systems of 
Diophantine equations of the form 

(1) x -ay = b, P(x, y) = z, 
where a is a positive integer that is not a perfect square, b is a nonzero integer, and 
P(x, y) is a polynomial with integer coefficients. Such systems arise, in particular, 
when looking for integer points on elliptic curves with rational 2-torsion (i.e. curves 
of the form y2 = Q(x), where Q is a reducible cubic polynomial). These curves 
appear in various contexts, such as the square pyramid problem of Lucas, and in 
the study of Pt-sets (see Section 6). 

Much of the study of systems of the form (1) has involved using Baker's results 
on linear forms in logarithms of algebraic numbers [2] to give an upper bound on 
the size of the solutions. (The finiteness of the number of solutions is guaranteed, 
in general, by the work of Thue [17] and Siegel [16], but their methods do not yield 
effectively computable bounds.) Using Baker's bound, plus additional techniques 
of Diophantine approximation and lengthy computations to close the gap, Baker 
and Davenport [3] showed that the system x2 - 3y2 = -2, Z2 _ 8y2 = -7 has 
no solutions in nonnegative integers other than (x, y, z) = (1, 1, 1) or (19, 11, 31). 
Grinstead [7] developed a more efficient technique to close the gap; his method was 
used by Brown [4] to handle the equations y2 - 2t2 = 1 u2 - 5t2 = 1, which have 
no solution other than (y, t, u) = (1, 0, 1). Pinch [15] applied the same approach to 
systems of two Pell equations where two unknowns are not equal, but rather differ 
by a constant. 
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On the other hand, several authors have given elementary solutions to systems 
of the form (1), starting with Cohn [6], who considered the case where P is a 
linear polynomial. Cohn's approach uses congruence arguments to eliminate some 
cases, and a clkver invocation of quadratic reciprocity to handle the remaining 
cases. (If no solutions exist, congruence arguments usually suffice, but they fail in 
the presence of a solution.) Using similar techniques together with the theory of 
the Pell equation, Kangasabapathy and Ponnudurai [10], reestablished the result 
of Baker and Davenport. The method was adapted by Mohanty and Ramasamy 
[13] to the equations X2 - 5y2 = -20, Z2 - 2y2 = 1, which have only the solution 
(x, y, z) = (0, 2, 3). (In passing, we note that yet another approach, involving elliptic 
curves, has been taken by Ono [14].) 

We present a systematic yet general procedure, using the methods of Cohn and 
the theory of the Pell equation, that solves many such systems. (Note that while 
the aforementioned elementary proofs all treat systems with b = 1, this restriction 
is easily lifted.) In this form, the procedure can be easily automated; in so doing, we 
have re-established several known results and obtained some new ones. It must be 
noted, however, that in some cases our procedure fails to solve a system completely; 
hence we cannot call it an "algorithm" as defined in [8]. Moreover, the procedure is 
not inherently suitable for proving results about more than one system at a time. 

The structure of the paper is as follows. In Section 2, we summarize the relevant 
properties of the Pell equation. In Section 3, we describe the procedure and prove-- 
that its completion, given an initial list of solutions, ensures that no other solutions 
exist. In Section 4, we modify the procedure to overcome an obstacle arising when 
P is an even polynomial in both variables (which occurs when solving simultaneous 
Pell equations). In Section 5, we make explicit the connection between (1) and 
integer points on elliptic curves. In Section 6, we describe specific results that we 
have proved using an automated version of the procedure; certification of these 
results appears in the Appendix. 

2. THEORY OF THE PELL EQUATION 

We now summarize the properties of the Pell equation 

x -ay = b, 

where a is not a perfect square. We first consider the related equation 

U2 _a2 =1. 
u2 -av 

2 

Proposition 1. The Pell equation u2 -av2 = 1, where a is not a perfect square, 
has infinitely many solutions. Furthermore, all solutions with u > 0 are given by 

(Utk + Vk\fia) = (U1 + V1 Va)k, 

where (ul, vl) is the smallest solution in positive integers, and k is any integer. 

Notice that 

(U1 + Vl\/ = (Uk + Vk\/a) = (Uk - Vk\/a) 

so that u_k = Uk and Vk = -Vk- 

We now return to the original equation. 
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Proposition 2. There exists a finite set T of solutions of the equation X-2_ ay2 = b 
such that for any solution (x, y), 

(x y Vai) = (xo?yov?a)(u?v \/a) 

for some (xo, yo) E T and some (u, v) with u2 - av2 = 1. 

We call (ul, vl) the fundamental solution, and the elements of T base solutions. 
(Note that (xo, yo) and (-xo, yo) are distinct base solutions.) Hua [9, ?11.5] gives 
an algorithm, using continued fractions, for producing the fundamental and base 
solutions. See [5] for results on the existence and number of base solutions. 

Now fix (xo, yo) E T, and definle xn = unxo + avnYO, Yn = UnYO + vnXOx so that 

(Xn i Yn y\a) = (xo i SO,/a) (un i Vn v\a). 

From the identity 

(Xn+r i Yn+rV?a) = (Xn i Yn 'a)(ui v 1V\a) = (xn i Yn \'a) (Ur i Vr\/0), 

we deduce the relations Xn+r = XnUr + aynvr and Yn+r = YnUr + XnVr. Using the 
fact that U-k = Uk and v-k = -Vk, we have the identities 

Xn+r + Xn-r = 2XnUr 

Xn+r - Xn-r = 2aYnVr 

Yn+r + Yn-r = 2YnUr, 

Yn+r - Yn-r = 2aXnVr. 

In case b = 1 and (xo,yo) = (1,0), we have (xn,yn) = (un,vn). Hence the same 
identities hold with u and v in place of x and y. 

Proposition 3. For all n, k, r, we have Yn+2kr =( Yn)kY_ (mod Ur) and Yn+2kr 
Yn (mod vr). 

Proof. The identities above imply that Yn+2r -Yn (mod Ur) and Yn+2r Yn 
(mod Vr). Applying these k times gives the desired result. 

Of course, the same result holds for un, v, or xn as well. 

Proposition 4. For all k, n, we have vnlvkn; if k is odd, we also have UnlUkn 

Proof. From the remarks following Proposition 3, we have that 

Un?2kln _(1)2k- 0 (mod un). 

We similarly have that Vkn Vn or vo (mod vn), but vo = 0, SO VnIVkn in either 
case. 

Proposition 5. Let {tn} be a sequence satisfying the recurrence relation 

tn+1 = 2tnUl- tn-- 

(In particular, we could have tn = Un, Vn, Xn or Yn.) Then {tn (mod mr)} is 
completely periodic for any positive integer m. 

Proof. Since the number of pairs of residue classes modulo m is finite, there must 
exist n, k > 0 such that (tn,tn?i) (tn?k,tn?k?1) (mod mn). However, since 
tn-1 = 2tnu - tn+l we also have tn-1 tn+k-1 (mod in), and so on down to 

to-tk (mod in). Hence {tn (mod m)} is completely periodic. 
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A more precise result, useful in computations, is due to Lehmer [12]; we note 
here only that for m = pk where p is an odd prime not dividing a, the period divides 
pk-l(p2 _ 1). 

3. THE PROCEDURE 

We now present our procedure for checking that a given list of solutions to 
a system of the form (1) is complete. We first describe the calculations, then 
show how their successful completion implies the completeness of the list, using the 
propositions of Section 2, some congruence arguments, and quadratic reciprocity. 

Let (un, vn) denote the nth solution of the Pell equation u2 - av2 = 1. For each 
base solution (xo, yo) of the equation x2 _ ay2 = b let S be the set of integers m 
such that (Xm, Ym) is in the given list of solutions; we wish to prove that P(xm, Ym) 
is a perfect square if and only if m E S. 

For each m E S, let oa = P(-xm, Ym). If lal is a perfect square, we give up; 
otherwise, let 3 be the product of all primes that divide oa an odd number of times. 
Let 1 be the period of {un (mod ,()} (guaranteed to exist by Proposition 5). Let r 
be the largest odd divisor of 1, and let q be the largest integer such that 2q 1, unless 
4 does not divide 1, in which case let q = 2. Let s be the order of 2 in the group 
(Z/rZ) x. 

Define the set 

U={t{fO,... ,r -1}: (2 /t)_} 

If U is empty, we give up; otherwise, find an odd number j such that for each of 
k = q, . ., q + s -1, there exist glj and t E U such that 2k-q9 t (mod ,(). Let 
,ym = 2qj. 

Let -y be twice the least common multiple of aym over all m E S, assuming all 
of these can be computed without having to give up. Now find an integer 6 with 
the following property: for every n E {O, ... ., y - 1}, either n m m (mod 2-ym) for 
some m E S; or there exists a prime p such that {xi (mod p) } and {yj (mod p) } 
have periods dividing 6-y, and P(Xn, Yn) is a nonresidue (mod p). (By Propositions 
3 and 4, the period condition can be ensured by having p1Vr, for some r1 such that 
2rqj'y6.) 

Theorem 1. Let notation be as above. If 6 can be found satisfying the specified 
properties, then P(Xm, Ym) is a perfect square if and only if m E S. 

Proof. Suppose P(Xn, Yn) is a perfect square for some n f S. By the construction 
of 6, there must exist m such that n m m (mod 2-ym), or else there would be a 
prime p such that P(Xn, yn) is not a quadratic residue mod p. However, n m r 
since n f S, and so n = m + 2k+ljh for some h, k with h odd and k > q. Now 

Xn = Xm+hj2k+1 = Xm+2h(2kj) = -XM (mod U32k) 

and similarly Yn -Ym (mod Uj2k). Therefore 

P(Xn,Yn) -P(-Xm I -YM) = a (mod Uj2k). 

The construction ensures that for some t E U and some glj, 2k-q9 t (mod 3). 
Since k > q > 2 and {un (mod 8)} has period dividing 4 (easily verified), the Jacobi 

symbols (i-) and (2) both equal 1. Now since caj/ 3 is a perfect square and 
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U2kg9U2kj by Proposition 4, we have by quadratic reciprocity 

(P(x) Yn) Ia U ( __2k9 _2qt 

V U2k / J ZU2k9 / \U2k9 (p J) 

contradicting the assumption that P(xn), yn) is a perfect square. D1 

Note that after the calculation has been performed, the values of a, Ym, 6, p can 
be given as a "certificate" from which the other values can be reconstructed and 
the calculation easily verified. 

4. A VARIATION ON THE PROCEDURE 

Notice that the procedure fails if P(Xm, Yi) and P(-Xn, -Ym) are both perfect 
squares for some m. In particular, if P(x,y) = Q(x2, y2) for some polynomial Q 
(which occurs when solving simultaneous Pell equations, for instance), the proce- 
dure will fail if there are any solutions at all. 

Fortunately, a simple modification to the procedure skirts this difficulty: take 
O = Q(-a2y2,-xv) instead of a! = P(-x, -Ym). Now instead of arguing that 
Xn X Xm (mod Uj2k) and similarly for Yn, we put i = (h - 1)/2, write n = m + 

j2k + 2i j2k and note that 

Xn - (_1)dXm+j2k (mod Uj2k) 

and similarly for Yn. Now 

Xn- (l)NXmuj2k + aymvj2k) (-l) aymvj2k (mod Uj2k) 

and similarly Yn (-l)hXmVj2k (mod Uj2k). Since Vj2k -1 (mod Uj2k), we 
discover that 

Xn -aym (mod Uj2k), 

Y2 _ (modUj2k)) 

and so 

P(nx~,Y) = Q(xn,y2 ) - Q(-a 2Y2-x2) = a (mod Uj2k). 

From this point, the argument proceeds as before. 
It should be noted that this modification was used in [13]. Note that the same 

obstruction remains if P(x, y) = ?P(-x, -y), but P is not an even polynomial in 
both variables, e.g. P(x, y) = xy or x3. However, we expect that other modifica- 
tions are possible; for one example, see [10]. 

5. INTEGER POINTS ON ELLIPTIC CURVES 

Our principal application of the procedure is the location of integer points on 
elliptic curves with at least one rational 2-torsion point, i.e. curves of the form 

2= (ax+b)(cx2? dx+e), 

where a, b, c, d, e are integers. If (x, y) is such a point, then we must have ax + b 
kCl2, CX2 + dx + e = kn2 for some k, and k must divide the constant 

a2(cx2 + dx + e) - (acx + ad - bc)(ax + b) = a2e -abdb2c. 
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Thus the problem reduces to a finite set of systems of the form 

ax+b= km2, 
2 2 cx +dx+e=knr. 

A linear change of variables turns the second equation into a Pell equation, putting 
the system in the form (1). 

In case the curve factors completely, and hence has the form 

y2 = (ax+b)(cx+d)(ex+ f), 

we have an additional recourse if the previous approach fails to yield results. We can 
write ax + b = g12, cx + d = hn2, ex + f = knr2, where again g, h, k are constrained 
to divide some constants. By eliminating x using two of the three equations at a 
time, we can write down three Pell equations, i.e. (cgl)2 - (cgah)in2 = (bc - ad)cg. 
Any two of these three equations yield a system whose solutions give integer points 
of the curve. 

Such flexibility makes this case especially convenient. If we treat it as a par-tially 
factoring curve, we can write down three factorizations and apply the method to 
each one in hopes of finding a solution. On the other hand, we can take the second 
approach and write down systems of two Pell equations. But since each system is 
actually comprised of three Pell equations, any two of which give the same answers, 
we have three choices in each of these cases. We can also decide which of the two 
equations serves as the constraining polynomial. Thus in this case we have many 
options to try before admitting failure. 

6. APPLICATIONS AND RESULTS 

We now present several problems to which our procedure can be applied. All are 
variations on the problem of finding integer points on elliptic curves. Certificates 
for the claimed results appear in the Appendix. 

Mordell asked for proof that the only solutions in integers to 

y2 jX) ? (X) ? (X) + (X) 

or equivalently 

6y2 = (X+1)(x2 _x+6) 

are x =-1, 0, 2, 7, 15, 74. It is easily shown that x2 _x+6 =kz2 for k E{1, 2,3,6}. 
The case k 1 is trivial, and our procedure completely solves the case k = 3. 
Unfortunately, it cannot complete the other two cases, so a complete elementary 
proof of the result remains elusive. 

Lucas' square pyramid problem is to show that the only solutions in positive 
integers to the equation 

6q2 = r(r + 1)(2r + 1) 

are (q, r) = (1, 1), (49, 24). By modular considerations, one shows that either r is 6 
times a square, or r + 1 is twice a square and 2r + 1 is three times a square. These 
give rise to the two systems 

(2) 6x2 _ y2 _- Z2 - 2y2 =-1 

(3) x2 2y2 = -1, 3Z2 - 2y2= _1. 
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Lucas gave an elementary solution for the first system, but was unable to solve the 
second. The first elementary solution of the second system was given by Ma [11], 
with improvements by Anglin [1]. Our method solves the second system (though 
not the first), thus providing a new elementary solution of Lucas' problem. 

Another application of the method arises in the study of Pt-sets. For a nonzero 
integer t, a Pt -set is a set of 3 or more nonzero integers, the product of any two of 
whose elements, plus t, is a perfect square. The integer x ? S is said to extend the 
Pt-set S if S U {x} is also a Pt-set. For example, 120 extends the P1-set {1, 3, 8}. 

Finding integers d that extend a given Pt-set {a, b, c} reduces immediately to 
finding integer points on the elliptic curve y2 = (ax + t) (bx + t) (cx + t). More 
precisely, one seeks solutions of the system 

bx2-ay2 -=t(b-a), bz2 _cy2 =t(b-c). 

In this language, Baker and Davenport proved that the P1-set {1, 3, 8} can be 
extended only by 120 (the other solution of the system gives 0). Mohanty and 
Ramasamy proved the P-1-set {1, 5, 10} has no extension (though 1 is a solution), 
and Brown proved the same for {1, 2, 5}. 

Using our procedure, we were quite successful reproducing the known extension 
results and proving several new ones. The procedure produces an elementary proof 
(differing slightly from the proof in [10]) of Baker and Davenport's result, it repro- 
duces the result of [13], and it gives an elementary proof of Brown's result (which 
has also been done by Walsh [18]). It also produced new results about other Pt- 
sets, summarized in the following table. Each Pt-set is given with the corresponding 
value of t and a list of all integers that satisfy the ensuing system of Pell equations. 
These include certain integers that are not considered extensions: 0 when t is a 
perfect square, or x already in the set such that x + t is a square. (For brevity, a 
certificate has only been included in the Appendix for the first Pt-set.) 

Pt-set t Extensions Pt-set t Extensions 
{1, 3, 120} 1 0, 8, 1680 {1, 2, 145} -1 1 
{1, 8, 120} 1 0, 3, 4095 {1, 2, 4901} -1 1 
{1, 8, 15} 1 0, 528 {1, 5, 65} -1 1 

{1, 15, 24} 1 0, 1520 {1, 5, 20737} -1 1 
{1, 24, 35} 1 0, 3480 {1, 10, 17} -1 1 
{2, 12, 24} 1 0, 2380 {1, 26, 37} -1 1 
{1, 5, 12} 4 0, 96 {1, 5, 6} -5 21 
{1, 5, 96} 4 0, 12, 672 {1, 12, 17} -8 57 
{1, 18, 29} 7 93 {2, 6, 10} -11 6, 30 
{2, 7, 19} 11 35 {2, 10, 30} -11 6, 18 

APPENDIX: CERTIFICATION OF RESULTS 

In this appendix we give the output produced by an implementation of our 
procedure on the problems described in Section 6; this output can be used to 
verify that the procedure can be completed in these cases, without repeating all 
of the calculations. The Mathematica code of the author's implementation can be 
obtained on the WWW at the following location: 

http: //www . math. princeton. edu/-kkedlaya. 
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The output for each system appears in a separate paragraph, and consists of the 
following: 

a A description of the system being solved. 
X The fundamental solution of the Pell equation. 
* Each base solution, followed by the values of -Ym and a for each m C S, or 

the message "No solutions in this family" if S is empty. 
* A summary of the distinct values of a and their corresponding values of -Ym* 
* A list of the primes p required in the definition of 6. 
* A list of all solutions of the system. 

We first present the output on the case x + 1 = 2m2, x29 x+6 = 3nr2 of Mordell's 
equation, which has the single solution x = 7. Recall that this reduces to a system 
of type (1) as follows: the discriminant of x2 - x + 6 - 3n2 is 12nr2- 23, so there 
exists k such that k2 - 12n2 -23 and x (1 + k)/2, implying k + 3 4m2. 

Solving n^2 - 12x^2 = -23, n = 4y^2 - 3 
Fundamental solution: {7, 2} 
Base solution of this family: {5, 2} 
No solutions in this family. 
Mod 3 (period 3) excludes: {0, 1, 2} 
Base solution of this family: {13, 4} 
Solution {13, 4, 8} gamma_m 4 alpha -40 
Alpha -40 period (1) 12 order 2 gamma_m 4 
Mod 7 (period 4) excludes: {3} 
Mod 97 (period 8) excludes: {5, 6} 
Mod 607 (period 16) excludes: {1, 2, 10} 
Mod 708158977 (period 32) excludes: {9, 25} 
Possible values of n: {13} 

Next is the output for Lucas' problem (using the second form of the procedure). 
Our implementation solves systems of the form an +- b = cx9, dn + e = fy2 

gn 9 h = iz2 by rewriting them in the form (1) as follows: 

afy2 - cdx2 = ae- bd, 
2 _ 2 a2z -cgx = ah-bg, 

where x is now the shared variable. As noted earlier, it is sometimes necessary to 
change the order of the original equations to get a system that can be solved. 

Solving n + 1 = 2x^2, 2n + 1 = 3y^2, n = z^2 
Fundamental solution: {7, 2} 
Base solution of this family: {1, 1} 
Solution {-1, 1, 1} gamma_m 4 alpha -40 

Solution {1, 1, 1} gamma_m 4 alpha -40 

Alpha -40 period (1) 12 order 2 gamma_m 4 
Mod 5 (period 3) excludes: {1} 
Mod 193 (period 12) excludes: {2, 9} 
Mod 97 (period 8) excludes: {1, 2, 5, 6} 
Possible values of n: {1} 

Here we give the output of the program on the Pt-sets whose extensions were 
previously established (the P1-set {1, 3, 8}, and the Pi1-sets {1, 2, 5} and {1, 5, 
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10}), as well as the set {1, 3, 120}, which had not been previously investigated. The 
reduction to (1) proceeds as for Lucas' problem. 
Solving n + 1 = x^2, 3n + 1 = y^2, 8n + 1 = z^2 
Fundamental solution: {2, 1} 
Base solution of this family: {1, 1} 
Solution {-19, 11, 31} gamma-m 60 alpha -8727 
Solution {-1, 1, 1} gamma_m 12 alpha -87 
Solution {1, 1, 1} gamma_m 12 alpha -87 
Solution {19, 11, 31} gamma_m 60 alpha -8727 
Alpha -8727 period (1) 5820 order 48 gamma_m 60 
Alpha -87 period (1) 60 order 4 gamma_m 12 
Mod 3 (period 6) excludes: {1, 4} 
Mod 11 (period 10) excludes: {1, 3, 6, 8} 
Mod 29 (period 15) excludes: {5, 9} 
Mod 61 (period 60) excludes: {14, 15, 44, 45} 
Mod 193 (period 24) excludes: {5, 6, 17, 18} 
Mod 37441 (period 40) excludes: {7, 12, 27, 32} 
Possible values of n: {0, 120} 

Solving 2n - 1 = x^2, 5n - 1 = y^2, n - = z^2 
Fundamental solution: {19, 6} 
Base solution of this family: {2, 1} 
Solution {2, 1, 0} gammajm 4 alpha -130 
Alpha -130 period (1) 60 order 4 gamma_m 4 
Mod 19 (period 4) excludes: {1, 3} 
Mod 7 (period 8) excludes: {2, 6} 
Possible values of n: {1} 

Solving 5n - 1 = x^2, lOn - 1 = y^2, n - = z^2 
Fundamental solution: {3, 2} 
Base solution of this family: {1, O} 
Solution {3, -2, 0} gamma_m 4 alpha -170 
Solution {3, 2, 0} gamma_m 4 alpha -170 
Alpha -170 period (1) 24 order 2 gamma_m 4 
Mod 11 (period 12) excludes: {0, 2, 4, 6, 8, 10} 
Possible values of n: {1} 

Solving n + 1 = x^2, 3n + 1 = y^2, 120n + 1 = z^2 
Fundamental solution: {2, 1} 
Base solution of this family: {1, 1} 
Solution {-71, 41, 449} gamma_m 420 alpha -1815831 
Solution {-5, 3, 31} gamma_m 12 alpha -10071 
Solution {-1, 1, 1} gamma_m 12 alpha -1431 
Solution {1, 1, 1} gamma_m 12 alpha -1431 
Solution {5, 3, 31} gamma_m 12 alpha -10071 
Solution {71, 41, 449} gamma_m 420 alpha -1815831 
Alpha -1815831 period (1) 11124 order 306 gamma_m 420 
Alpha -10071 period (1) 3348 order 90 gamma_m 12 
Alpha -1431 period (1) 108 order 18 gamma_m 12 
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Mod 11 (period 10) excludes: {2, 7} 
Mod 29 (period 15) excludes: {4, 5, 6, 8, 9, 10} 
Mod 61 (period 60) excludes: {14, 15, 16, 18, 41, 43, 44, 45} 
Mod 71 (period 7) excludes: {2, 4} 
Mod 139 (period 70) excludes: {6, 8, 19, 26, 28, 41, 43, 50, 61, 63} 
Mod 757 (period 84) excludes: {6, 77} 
Mod 2017 (period 21) excludes: {8, 10, 12} 
Mod 2521 (period 28) excludes: {7, 20} 
Mod 10333 (period 84) excludes: {14, 27, 56, 69} 
Mod 193 (period 24) excludes: {2, 4, 5, 6, 7, 9, 14, 16, 17, 18, 

19, 21} 
Possible values of n: {0, 8, 1680} 
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